Effect of airway opening on production of exhaled particles.

نویسندگان

  • Ann-Charlotte Almstrand
  • Björn Bake
  • Evert Ljungström
  • Per Larsson
  • Anna Bredberg
  • Ekaterina Mirgorodskaya
  • Anna-Carin Olin
چکیده

The technique of sampling exhaled air is attractive because it is noninvasive and so allows repeated sampling with ease and no risk for the patient. Knowledge of the biomarkers' origin is important to correctly understand and interpret the data. Endogenous particles, formed in the airways, are exhaled and reflect chemical composition of the respiratory tract lining fluid. However, the formation mechanisms and formation sites of these particles are unknown. We hypothesize that airway opening following airway closure causes production of airborne particles that are exhaled. The objective of this study was to examine production of exhaled particles following varying degrees of airway closure. Ten healthy volunteers performed three different breathing maneuvers in which the initial lung volume preceding an inspiration to total lung capacity was varied between functional residual capacity (FRC) and residual volume (RV). Exhaled particle number concentrations in the size interval 0.30-2.0 microm were recorded. Number concentrations of exhaled particles showed a 2- to 18-fold increase after exhalations to RV compared with exhalations where no airway closure was shown [8,500 (810-28,000) vs. 1,300 (330-13,000) particles/expired liter, P = 0.012]. The difference was most noticeable for the smaller size range of particles (<1 microm). There were significant correlations between particle concentrations for the different maneuvers. Our results show that airway reopening following airway closure is an important mechanism for formation of endogenous exhaled particles and that these particles originate from the terminal bronchioles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of exhalation flow on endogenous particle emission and phospholipid composition

Exhaled particles constitute a micro-sample of respiratory tract lining fluid. Inhalations from low lung volumes generate particles in small airways by the airway re-opening mechanism. Forced exhalations are assumed to generate particles in central airways by mechanisms associated with high air velocities. To increase knowledge on how and where particles are formed, different breathing manoeuvr...

متن کامل

Bronchodilatation increases number of particles in exhaled air in subjects with asthma

Background Particles in exhaled air (PEx) are derived from the small airways and are formed during airway closure and re-opening. They mainly contain surfactant; both phospholipid and protein composition in PEx resemble that of BAL. Measurements of surfactant protein A in PEx from 100 l exhaled air were shown to be highly reproducible, making the PEx a promising tool in the monitoring of asthma...

متن کامل

Surfactant Protein A in Exhaled Endogenous Particles Is Decreased in Chronic Obstructive Pulmonary Disease (COPD) Patients: A Pilot Study

BACKGROUND Exhaled, endogenous particles are formed from the epithelial lining fluid in small airways, where surfactant protein A (SP-A) plays an important role in pulmonary host defense. Based on the knowledge that chronic obstructive pulmonary disease (COPD) starts in the small airway epithelium, we hypothesized that chronic inflammation modulates peripheral exhaled particle SP-A and albumin ...

متن کامل

Effect of heterogeneous ventilation and nitric oxide production on exhaled nitric oxide profiles.

Elevated exhaled nitric oxide (NO) in the breath of asthmatic subjects is thought to be a noninvasive marker of lung inflammation. Asthma is also characterized by heterogeneous bronchoconstriction and inflammation, which impact the spatial distribution of ventilation in the lungs. Since exhaled NO arises from both airway and alveolar regions, and its level in exhaled breath depends strongly on ...

متن کامل

Characteristics of exhaled particle production in healthy volunteers: possible implications for infectious disease transmission [version 1; referees: 2 approved]

The size and concentration of exhaled particles may influence respiratory infection transmission risk. We assessed variation in exhaled particle production between individuals, factors associated with high production and stability over time. We measured exhaled particle production during tidal breathing in a sample of 79 healthy volunteers, using optical particle counter technology. Repeat meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 108 3  شماره 

صفحات  -

تاریخ انتشار 2010